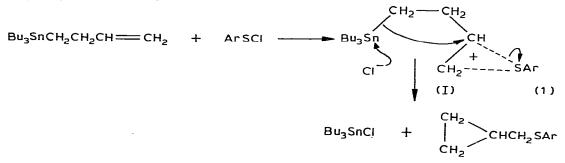
Journal of Organometallic Chemistry, 235 (1982) 37-41 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SULPHUR SUBSTITUTED ORGANOTIN COMPOUNDS

IX *. FORMATION OF [(3-CHLORO-4-0-NITROPHENYLTHIO)BUTYL]-TRIPHENYLTIN, Ph₃SnCH₂CH₂CHClCH₂SC₆H₄NO₂-o, FROM REACTION OF 4-BUTENYLTRIPHENYLTIN AND o-NITROBENZENESULPHENYL CHLORIDE

J. McM. WIGZELL and J.L. WARDELL*


Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE (Great Britain)

(Received March 17th, 1982)

Summary

Reaction of the sulphenyl chloride, o-NO₂C₆H₄SCl, with Ph₃SnCH₂CH₂CH= CH₂ occurs to give the adduct, Ph₃SnCH₂CH₂CHClCH₂SC₆H₄NO₂-o. In contrast, no adduct is formed with the more reactive, p-MeC₆H₄SCl. Instead, and as reported previously with Bu₃SnCH₂CH₂CH₂CH₂, the cyclopropylmethyl aryl sulphide is obtained. The adduct is thermally stable, and reacts with I_2 and $HgCl_2$ to give phenyl-tin cleaved products, Ph₂SnXCH₂CH₂CHClCH₂SC₆H₄NO₂-o (X = I or Cl).

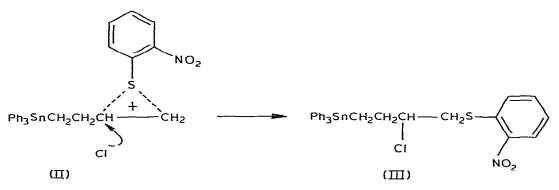
Peterson et al. [2] reported reactions of various electrophiles, including sulphenyl halides, with 4-butenyltributyltin compounds, equation 1. These led to formation of cyclopropylmethyl derivatives. An intermediate cation is formed, which undergoes nucleophilic attack at the tin centre by the chloride

* For part VIII see ref. 1.

0022-328X/82/0000-0000/\$02.75 © 1982 Elsevier Sequoia S.A.

ion with the resultant formation of the cyclopropylmethyl derivative.

We have found that this type of reaction is not a general reaction of 4butenyltin compounds and that adducts may be obtained, as we now describe.


Results and discussion

Reaction of $Ph_3SnCH_2CH_2CH_2CH_2$ with o-NO₂C₆H₄SCl in methylene dichloride solution proceeded according to equation 2.

$$Ph_{3}SnCH_{2}CH_{2}CH=CH_{2} + o -NO_{2}C_{6}H_{4}SCl \xrightarrow{CH_{2}Cl_{2}}{\Delta}$$

$$Ph_{3}SnCH_{2}CH_{2}CH_{2}SC_{6}H_{4}NO_{2}-o \qquad (2)$$

The Marknownikov adduct was obtained in an isolated yield of 53% with no indication of the other adduct. The formation of this adduct will arise from attack by Cl^- on the intermediate cation II at the positive carbon rather than at tin as in I. Phenyl substituents at the tin centre will exert different electronic

and steric effects at tin compared to the butyl substituents, such that they deactivate the tin centre for nucleophilic attack by Cl⁻.

Of interest, from the reaction of the more reactive sulphenyl halide, p-MeC₆-H₄SCl, with Ph₃SnCH₂CH₂CH=CH₂, no adduct could be detected. The ¹H NMR spectrum of the reaction mixture indicated the presence of some cyclopropyl product.

The adduct III, had m.p. $81-83^{\circ}$ C. The parent ion (0.9%) was weakly observed in the mass spectrum at 20 eV, with prominant tin-containing ions $[M-Cl]^+$ (0.8%), $[M-Ph]^+$ (2.5%), $[M-2Ph]^+$ (4%), [433] (4%), $[Ph_3Sn]^+$ (100%) and [308] (35%). The Mössbauer spectrum showed the isomer shift to be 1.249(8) mm s⁻¹ with no quadruple splitting. Reactions of the adduct were studied with iodine and HgCl₂. Both these reagents produced phenyl—tin bond cleavages, equations 3 and 4.

$$III + I_2 \rightarrow Ph_2SnCH_2CH_2CHClCH_2SC_6H_4NO_2 - o + PhI$$
(3)

$$III + HgCl_2 \rightarrow Ph_2SnCH_2CH_2CHClCH_2SC_6H_4NO_2-o + PhHgCl$$
(4)

Similar reactions have been found with $Ph_3Sn(CH_2)_4SAr$ compounds. The adduct III is stable to heat. Thus heating a sealed solution of III in CDCl₃ solution at 100°C for 3 h resulted in no reaction. These sulphenyl halide reactions of 1-butenyltriphenyltin (i.e. tin—carbon bond cleavage and adduct formation) can be added to the reported reactions with vinyl—tin [3] [carbon—tin bond cleavage and adduct formation, equations 5 and 6] and to allyl—tin [carbon—tin cleavage, equation 7].

Some similarities between the 1-butenyl- and the 1-vinyl-tin reactions are apparent; for example (i) more cleavage of the carbon—tin bond occurs in each

$$Cl$$

$$I$$

$$R_{3}SnCH=CH_{2} + ArSCl \rightarrow Ph_{3}SnCHCH_{2}SAr$$

$$R_{3}SnCH=CH_{2} + ArSCl \rightarrow R_{3}SnCl + ArSCH=CH_{2}$$
(5)
(6)

 $R_{3}SnCH_{2}CH = CH_{2} + ArSCl \rightarrow R_{3}SnCl + ArSCH_{2}CH = CH_{2}$ (7)

case for trialkyltin derivatives than for Ph_3Sn derivatives, (ii) much more carbon—tin bond cleavage occurred with *p*-MeC₆H₄SCl than with *o*-NO₂C₆H₄SCl and (iii) Marknownikov adducts were obtained.

Reactions of sulphenyl halides with other organotin compounds have been studied [5-7]. Only the more reactive carbon—tin bonded compounds react, e.g. fluorenyl- [5], indenyl- [5], *p*-anisyl- [4], ArSCH₂- [6] and ArSCH₂CH₂-tin bonds [7] are cleaved. Phenyltin bonds have been shown to be inert [4].

Experimental

1-Butenyltriphenyltin. This was prepared by the reaction of the Grignard reagent from 4-bromobutene (10.0 g, 0.074 mol) and Ph₃SnCl (15.2 g, 0.0394 mol) in THF solution, yield 85%, m.p. $72-75^{\circ}$ C.

p-Toluenesulphenyl chloride [8]. Dry chlorine gas was bubbled through a stirred solution of *p*-toluenethiol (15 g, 0.1209 mol) in carbon tetrachloride (100 ml) for 2 h, at 0° C, forming a dark red solution. The solvent was removed under reduced pressure and *p*-toluenesulphenyl chloride purified by vacuum distillation. Yield 67%, b.p. $62-64^{\circ}$ C/0.1 mmHg (lit. [8] b.p. $66-68^{\circ}$ C/0.8 mmHg).

o-Nitrobenzenesulphenyl chloride [9]. Dry chlorine gas was bubbled through a solution of bis(o-nitrophenyl)disulphide (11.084 g, 0.0361 mol) and iodine (0.5 g, 0.00196 mol) in carbon tetrachloride (150 ml) for 1.5 h. The solution was filtered and the solvent removed under reduced pressure to give o-nitrobenzenesulphenyl chloride, which was recrystallised from petroleum ether (b.p. 60-80°C) to give yellow needles, yield 72%, m.p. 74°C (lit. [9] m.p. 73-73.5°C).

Reaction of 4-butenyltriphenyltin and p-toluenesulphenyl chloride

To 4-butenyltriphenyltin (2.0 g, 0.0049 mol) in dichloromethane (15 ml) at 0° C was added dropwise with stirring, a solution of *p*-toluenesulphenyl chloride (0.78 g, 0.0049 mol) in dichloromethane (15 ml). After addition, the resultant mixture was heated for 30 min, cooled and the solvent removed under reduced pressure to yield a pale yellow oil. The ¹H NMR spectrum of the oil indicated some cyclopropyl protons but no adduct.

Reaction of 4-butenyltriphenyltin and o-nitrobenzenesulphenyl chloride

To a solution of 4-butenyltriphenyltin (2.0 g, 0.0049 mol) in dichloromethane (15 ml) was added o-nitrobenzenesulphenyl chloride (0.93 g, 0.0049 mol) in dichloromethane (15 ml), and the resultant mixture refluxed for 2 h. The solvent was removed under reduced pressure to give a yellow oily solid which was recrystallised from ethanol to give [(3-chloro-4-o-nitrophenylthio)butyl]triphenyltin, yellow plates, yield 1.54 g, 53%, m.p. $81-83^{\circ}$ C.

Analysis. Found: C, 56.6; H, 4.4; S, 5.3; Cl, 6.0; N, 2.35. C₂₈H₂₆SClNO₂Sn calcd.: C, 56.6; H, 4.2; S, 5.3; Cl, 5.9; N, 2.3%.

¹H NMR. (CDCl₃, 30°C): δ 6.90–8.20 (m, 19H, phenyls and *o*-NO₂C₆H₄), 3.56 (m, 3H, SCH₂, CHCl); 1.30–2.75 (m, 4H, SnCH₂CH₂).

¹³C NMR. (CDCl₃, 30° C): δ 125.72–138.10 (aryl C), 51.00 (C–Cl), 45.97 (CH₂S), 28.06 (CH₂CH₂CH), 7.58 (CH₂Sn).

Mössbauer spectrum. I.S. 1.249(8) mm s⁻¹; 0.85(3) mm s⁻¹.

Reaction of Ph₃SnCH₂CH₂CHClCH₂SC₆H₄NO₂-o with iodine

To a stirred solution of $Ph_3SnCH_2CH_2CHClCH_2SC_6H_4NO_2$ -o (0.808 g, 0.00135 mol) in CCl₄ (5 ml) was added dropwise, a solution of iodine (0.342 g, 0.00135 mol) in CCl₄ (20 ml). The purple colour disappeared over 10 h to give a pale yellow solution. The solvent was removed under reduced pressure to yield a pale yellow oil, which was washed several times with petroleum ether (b.p. 60–80°C). The ¹H NMR spectrum of the resulting oil, which refused to crystallise, showed several changes (CDCl₃, 30°C): δ 7.00–8.40 (m, 14H, phenyls and o-NO₂C₆H₄S), 3.36 (m, 3H, SCH₂ and CHCl), 1.6–2.5 (m, 4H, CH₂CH₂Sn), which is as expected for Ph₂Sn(I)CH₂CH₂CHClCH₂SC₆H₄NO₂-o.

Reaction of $Ph_3SnCH_2CH_2CHClCH_2SC_6H_4NO_2$ -o with mercuric chloride

To a solution of $Ph_3SnCH_2CH_2CHClCH_2SC_6H_4NO_{2-0}$ (0.566 g, 0.00095 mol) in ethanol (20 ml) was added mercuric chloride (0.258 g, 0.00095 mol) in ethanol (10 ml) and the mixture refluxed for 3 h. The solvent was removed under reduced pressure to yield a yellow oily-solid to which was added CHCl₃. The insoluble white solid PhHgCl was filtered off and recrystallised from ethanol, m.p. 255–256°C (lit. [10] m.p. 255–257°C).

Thermolysis of Ph₃SnCH₂CH₂CHClCH₂SC₆H₄Me-p

A solution of $Ph_3SnCH_2CH_2CH_2CH_2SC_6H_4NO_2$ -o (0.20 g, 0.00035 mol) in CDCl₃ (0.3 mol) in a sealed tube was heated at 100°C for 3 h. The ¹H NMR spectrum showed that no reaction had occurred, as did TLC.

Mössbauer spectra were recorded as previously described [11].

References

- 1 Part VIII. J.L. Wardell and J. McM. Wigzell, J. Chem. Soc., Dalton Trans., (1982) in press.
- 2 D.J. Peterson, M.D. Robbins and J.R. Hansen, J. Organometal. Chem., 73 (1974) 237.
- 3 J.L. Wardell, J. Chem. Soc., Dalton Trans., (1975) 1786.
- 4 J.L. Wardell and S. Ahmed, J. Organometal. Chem., 78 (1974) 395.
- 5 A.N. Kashin, N.A. Bumagin, I.P. Beletskaya and O.A. Reutov, J. Org. Chem. USSR (Engl. Trans.), 16 (1980) 2190.
- 6 R.D. Taylor and J.L. Wardell, J. Chem. Soc., Dalton Trans., (1976) 1345; J.L. Wardell and R.D. Taylor, Tetrahedron Lett., (1982) 1735.

- 7 R.D. Taylor and J.L. Wardell, J. Organometal. Chem., 94 (1975) 15.
- 8 F. Kurzer and J.R. Powell, Org. Synth. Coll. Vol. IV, (1963) 934.
- 9 M.H. Hubacher, Org. Synth., Coll. Vol. IV, (1943) 455.
- 10 E. Krause and M. Schmitz, Ber., 52B (1919) 2150.
- 11 P.L. Clarke, R.A. Howie and J.L. Wardell, J. Inorg. Nucl. Chem., 36 (1974) 2449.